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Quantum states of bosonic systems

The radiation field is an example of an immaterial bosonic system. Exam-
ples of material bosonic systems which play an important role in quantum
optics are the vibrations of trapped atoms and the internuclear vibrations of
molecules inasmuch as they can be approximated by harmonic oscillators.
Among the wide variety of possible quantum states of bosonic systems, there
are some fundamental types that are of particular interest. First, such states
may serve as a quantum-mechanical basis for representing the various observ-
ables of interest. Second, they may be regarded as typical examples for certain
limiting cases of quantum noise, with special emphasis on nonclassical fea-
tures. Although the definition of nonclassicality (Chapter 8) is a nontrivial
task, we will use the term nonclassical in this chapter in a more generous way.

We will begin with the introduction of the number states (Section 3.1). Al-
though they are well known, from standard quantum-mechanics textbooks, as
energy eigenstates of harmonic oscillators, they will be seen to reveal the quite
counter-intuitive feature of not showing the oscillatory behavior expected of
classical harmonic oscillators. The classically expected oscillatory behavior
is then shown to be realized by the coherent states (Section 3.2). The coher-
ent states are Gaussian states to which the squeezed coherent states (often
called quadrature-squeezed states) also belong (Section 3.3). Their quantum-
noise properties are of great practical relevance for applications in measure-
ment techniques below the standard quantum limit. Finally, the eigenstates
of phase-rotated quadratures (Section 3.4) and phase states (Section 3.5) are
introduced. Quadrature eigenstates play an important role in the context of
homodyne detection (see Sections 6.5 and 7.1).

3.1
Number states

Let us consider a system of uncoupled harmonic oscillators whose Hamilton-
ian reads

H=) H,, 3.1)
A
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where
H) = hwy (fiy + 3) (3.2)
is the single-oscillator Hamiltonian expressed in terms of the number operator

iy =ata, (3.3)

of the Ath oscillator, with 4, and ﬁ}, respectively, being the annihilation and
creation operators attributed to the oscillator which obey the bosonic commu-
tation relations

[ax,a1/] = Spn (3.4)

[ay,a0] = 0= [a},a},]. (3.5)

From Chapter 2 we know that mode expansion of the free radiation field just
leads to Eqs (3.1)—(3.5) [cf. Egs (2.75)—(2.78)]. Therefore, what we derive in the
following in a very general context can be thought of as being the radiation
field or other specific realizations of harmonic oscillators — also referred to as
modes in the following — such as the (harmonic) motion of trapped atoms or
(harmonic) molecular vibrations.

To proceed we will restrict ourselves first to a single oscillator, thereby omit-
ting the index A (A, — H), and we will then later consider the case of multi-
mode systems. The eigenstates of the Hamiltonian (3.2) are of particular in-
terest, since they naturally provide a complete and orthonormal set of basis
states. To solve the eigenvalue problem for H, it is sufficient to solve the
eigenvalue problem for the number operator 7, since both operators commute,
[A, 7] =0. The main steps for solving this standard problem of quantum me-
chanics may be summarized as follows. The eigenvalue equation reads

filpn) = nl¢n), (3.6)

with n being the eigenvalue and |¢,) the corresponding eigenvector. Since 7
is Hermitian, the eigenvalues 1 are real-valued and eigenvectors correspond-
ing to different eigenvalues are orthogonal. Inserting 1 as given according to
Eq. (3.3)in

(Pnlftlpn) = n{pn|dn), (3.7)
we obtain
{@nla" a|pn) = 1{puldn). (3.8)

Since |¢,) and d|¢,) are Hilbert-space vectors, whose norms are non-negative,
we immediately observe from Eq. (3.8) that the eigenvalue 7 must also be non-
negative. Using the relation [4!,71] = 14!, derived with the help of the bosonic
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commutator (3.4), we obtain
ndpn) = (@'7+ [7,8']) ) = (n — 1) |gn). (3.9)

From this relation it is seen that, as long as n — [ > 0, the state al |<pn> is an
eigenstate of 7 with eigenvalue 1 —I, which may be denoted by |¢,,_;) =a'|¢y).
For a negative eigenvalue n —I <0 it is required that ' |, ) =0 in order to fulfill
Eq. (3.9) under the constraint of non-negative eigenvalues. For n=0and /=1
this requirement provides us with the relation

d|¢o) =0, (3.10)

which defines |¢p) as the ground state, having zero number of quanta, from
which it follows that no further quantum can be annihilated. Analogously to
Eq. (3.9), we may prove that

aat|p,) = (n+Da¢n), (3.11)

which states that 21|, ) is an eigenstate of # with eigenvalue 7+ 1, which we
denote by |¢,, 1) =2"¢n).

From Egs (3.9) and (3.11) it is clear that @ and @' decrease and increase the
number of energy quanta by single quanta, respectively. Therefore, the op-
erators 4 and 4" are called annihilation and creation operators, respectively.
Starting from the ground state |¢g) via Eq. (3.11) a ladder of eigenstates of the
free Hamiltonian (3.2) is created by multiple application of the creation op-
erator 4. Since these states exhibit defined numbers of energy quanta they
are usually called number states. Depending on the physical system under
study they may correspond to eigenstates with a precise number of photons,
phonons, or other elementary bosonic excitations.

Normalizing the states |¢;,), we obtain the number states |n) =|¢n) / (Pn|Pn)
as an orthonormal set of basis states. For this purpose we create the states |1)
via Eq. (3.11) from the ground state |0) — also called the vacuum state — which
we take to be normalized, (0]0) =1,

|n) = N,a'™|0). (3.12)
The value of N, is determined by the normalization condition

(n|n) =1, (3.13)
which by insertion of Eq. (3.12) into Eq. (3.13) reads

IN.|? (0]a"at"|0) = 1. (3.14)

The simplest way of calculating the vacuum expectation value in Eq. (3.14) is
to bring the operator product 4"4"" into normal order. Applying Eq. (C.34)
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_ < n n! Atn—Ian—I
-y (JW“ a1 (3.15)

so that we may rewrite Eq. (3.14) as
[Nal? Z( ) OI”" 'a"10) = 1. (3.16)

Since quanta cannot be annihilated from the vacuum state, cf. Eq. (3.10), we
conclude that only the term with n — /=0 contributes to the sum of Eq. (3.16),
so that

No=—=, (3.17)

where we have chosen NV, to be real-valued. Inserting Eq. (3.17) into Eq. (3.12),
we obtain a rule for creating from the vacuum state all the number states |1),
which are the eigenstates of the Hamiltonian (3.2),

In) = \/%ﬁ“”m. (3.18)

This implies also the following relations for the (normalized) number states:

at|n) = %a*nﬂm =Vn+1|n+1), (3.19)
. 1 4 1t
aln) = ﬁua* 0) = N [a,27"]|0)

= a0y = Vi ln—1), (3.20)

vl
where the relations (C.16) and (3.10) have been used for the derivation of
Eq. (3.20).
As already mentioned, the number states |n) and |m) with n # m are orthog-
onal, since they are eigenstates of the Hermitian number operator 1,

(m|n) = Sun. (3.21)

This orthogonality may also be shown directly, by representing |#) and |m) in
the form (3.18) and normally ordering the operators 4 and 4*. Moreover, the
number states form a complete set of orthonormal vectors in the Hilbert space
of the single-mode system,

X_;O In)(n| =1, (3.22)
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where [ is the unity operator in this Hilbert space. It is now evident that, due
to their orthonormality (3.21) and completeness (3.22), the number states are
of potential use for many quantum-mechanical calculations.

3.1.1
Statistics of the number states

Let us consider the main properties of number states, focusing on the free ra-
diation field expanded in terms of monochromatic modes. In this case the
number states attributed to a mode of frequency w may be called photon-
number states since — for a mode of frequency w — they are states with a pre-
cise number 7 of energy quanta iw which are commonly denoted as photons.
The average energy of the mode in a number state is obtained by taking the
expectation value (n|H|n) with H according to Eq. (3.2). Since (n|fi|n)=n, we
readily obtain

(n|H|n) = hw(n+1), (3.23)

which shows that an energy fiw is indeed associated with each photon. How-
ever, in the absence of photons, n=0, i. e., for the ground state, there is still the
zero-point energy of the associated harmonic oscillator left: (0|H|0) =fiw /2.
This is due to the fact that quantities such as the coordinate and the momen-
tum of the oscillator still reveal fluctuations in the ground state.

A rough measure of the fluctuation of a quantity O is the variance ((A0)?),
where AO=0 — (O). Since the number of quanta is well defined in a number
state, the number variance for such a state of course vanishes,

(n|(An)%|n) = (n|A*|n) — (n|An)* =0, (3.24)

as also does the energy variance.
Let us now consider the expectation value and the variance of a coordinate-
like quantity such as the electric field of a single-mode radiation field,

E(r) = iw[a A(r) — aTA*(r)] (3.25)

[cf. Eq. (2.70)], where A(r) is the corresponding mode function. Using
Egs (3.19)—(3.21), we readily prove that when the mode is prepared in a
photon-number state, then the mean value of the electric-field strength van-
ishes,

(n|E(r)|n) = 0. (3.26)

Thatis, a photon-number state is far from representing a (nonfluctuating) clas-
sical wave which would naturally reveal a nonvanishing electric field. In view

77



78

3 Quantum states of bosonic systems

of particle-wave dualism, this type of state is closely related to the particle na-
ture of the radiation rather than to its wave nature. It will be seen later (Chap-
ter 8) that it is a nontrivial problem to experimentally prepare radiation field
modes in photon-number states. The expectation value of the intensity

N

I(r) = B () EH)(x) (3.27)
in a photon-number state is proportional to the number of photons in the field:
(n|I(x)|n) = W?|A(r) | (n]aaln) = w?|A(r)|*n. (3.28)

Accordingly, the variance of the kth component of the electric-field strength is
found to be

(n[AE((r)]*|n) = w?|A(r) P(2n + 1), (3.29)

from which the fluctuation of the electric field is seen to increase with the
photon number 7. The minimum noise is obtained for n=0, that is, in the case
of the vacuum field we have

(OI[AE(1)?]0) = w?| Ag () 2. (3.30)

This clearly shows that even in the vacuum case, when no photons are present,
there are quantum fluctuations of the field.

3.1.2
Multi-mode number states

We now turn to the more general case of a multi-mode system and remem-
ber that the Hamiltonian is additively composed of independent single-mode
Hamiltonians [Eq. (3.1) together with Eq. (3.2)]. The additivity of the Hamil-
tonian leads to the fact that its eigenstates are simply products of the single-
mode eigenstates, that is, F|{n,}) =E (n,y{na}), where the eigenstates and
energies are given by

Hm}) = H|nx\>/ (3.31)

A
Efnyy = Y hwy(ny + 3). (3.32)
A

In the case of a radiation field, for example, one may consider an experiment
where the total number of photons is measured regardless of their frequency
or polarization, i.e., regardless of which mode they are in. The measured
operator would then be the total-number operator, defined by

N=Y . (3.33)
A
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We can easily see that the total-number operator N commutes with the Hamil-
tonian (3.1) [together with Eq. (3.2)] and therefore has the same eigenvectors

H{ma}),
NH{n}) = N{m}), (3.34)

with the total number of photons in the state |{n, }) being

N=Yn (3.35)
A

However, since different combinations of numbers 1, can lead to the same
total number N, there is a degeneracy with respect to the operator N. Taking
into account A different modes, it can be readily seen that there are AN pos-
sibilities of occupying the different single modes to obtain the total number
N.

The noise properties of a multi-mode system in a number state are quite
similar to those of a single-mode system. In particular, the variance of the
total-photon number of a multi-mode radiation field vanishes, as does the
mean value of the electric field:

{na}(AN)?[{mr}) =0, (3.36)
({ma}E(r)[{nr}) =0, (3.37)

where E(r) is now meant to be the multi-mode electric-field strength accord-
ing to Eq. (2.70).

3.2
Coherent states

The quantum states that come closest to the classical ideal are the coher-
ent states. As their name suggests, they indeed show a coherent amplitude,
i.e., they reveal the classically expected oscillatory behavior of the harmonic-
oscillator coordinates. In order to derive the coherent states and to provide
the tools for the squeezed states (Section 3.3), we follow an approach based on
unitary transformations. For the sake of clarity we again start from a single-
mode system. Performing a unitary transformation (I (UT=U"1), the operator
4 transforms to 4’ as

a' = tal’, (3.38)
whereas the transformed number states |1)’ read

[n)" = Uln). (3.39)
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Clearly, the transformed operators 4’ and 4’t again obey the bosonic com-
mutator relations (3.4) and (3.5). Defining the transformed number operator
7' =43’ and taking into account Eqs (3.6), (3.19) and (3.20) we readily find
the eigenvalue equation for the transformed number operator,

i'|n) = n|n)’, (3.40)

and the actions of the transformed creation and annihilation operators,

) =vVn+1n+1), (3.41)
a'ln) =vnin—1)". (3.42)

The transformed operators and states thus reveal the same algebraic relations
as the original ones and therefore can also be used as a complete set of states
to span the Hilbert space. In particular, from Eq. (3.42) we see that

2'10) =0, (3.43)

which defines a new ground state with respect to the transformed operators.
Clearly, although their algebraic relations do not change, the physical prop-
erties of the transformed number states |1)’ may drastically differ from the
original number states |n). This, however, depends solely on the actual form
of the applied unitary transformation U.

The transformation leading to the coherent states is implemented by the
displacement operator D(«),

U = D(n) = exp(aa’ — a*a), (3.44)

with a being a complex c-number variable. Using Eq. (C.27), we may factorize
the displacement operator to obtain its normally and anti-normally ordered
forms, respectively,

D() = e e~ ip=lal?/2) (3.45)

D(n) = e~ dent olol?/2, (3.46)
We may therefore write the transformed annihilation operator 4’ as

7' = D(n)aDt(a) = ' e W5 g0 dp—at’ — pui’ypud” (3.47)
from which, together with the relation (C.9), it follows that

i =a—a. (3.48)

This result now enables us to rewrite the definition of the transformed ground
state (3.43) as

(@ —a)D(a)|0) = 0. (3.49)
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Denoting by |a) =|0) the transformed ground state which depends paramet-
rically on «,

la) = D(a)|0), (3.50)

we see from Eq. (3.49) that for each complex number « the state |a) is a right-

hand eigenstate of the non-Hermitian annihilation operator 4 with eigen-
value «,

ala) = afa). (3.51)

From Eq. (3.51) we further see that correspondingly («| is a left-hand eigen-
state of 4,

(w]a™ = (a|a*. (3.52)

The states |«), being normalized to unity ({a|a) =1), are called coher-
ent states or Glauber states [Schrodinger (1926); Klauder (1960); Glauber
(1963a,b,c)]. The amplitude a determines a point in a complex phase space
which corresponds to a coherent amplitude of the corresponding harmonic
oscillation, i.e., (a|d|a) =a. This phase-space amplitude or coherent excitation
can be changed by use of the displacement operator, which can be seen by
first considering the action of two subsequent displacements,

D(«)D(B) = D(a + B) exp[ilm(ap*)]. (3.53)

From this equation together with Eq. (3.50) we see that, apart from a phase fac-
tor, the action of a displacement operator D(p) on a coherent state |«) creates
a new coherent state with amplitude o+,

D(B)la) = e ™|+ p), (3.54)

i.e., the operator D(B) displaces the phase-space amplitude of the coherent
state by the amount B. In particular, this also shows that the ground state |0)
can be regarded as being the coherent state of amplitude a =0, from which,
by application of the displacement operator (3.44), all possible coherent states
can be obtained, in agreement with Eq. (3.50).

The action of 4™ on |a) and 4 on (&, respectively, can be derived as follows.
Applying a* to |a) =D(«)|0) and using the normally ordered form of the dis-
placement operator (3.45) yields

7)10) = atexp[(a" — 1 a*)a]|0)

= (5 + %) exel@ ~ a)a] 0}, (355)
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and hence

R d a*
atla) = <$ + 7) |a). (3.56)
Accordingly, applying 4 to (x| and using the anti-normally ordered form (3.46)
yields

. Jd o
—
where the derivative is supposed to act to the left side.
Clearly, the coherent states |¢) can be expanded in terms of the number
states |11) by use of their completeness relation (3.22),

) = io ) (. (358)

The expansion coefficients (n|a) can be calculated by means of Eqs (3.18) and
(3.50), resulting in

(nla) = lx—ne""“zﬂ. (3.59)
Vn!
From Eqgs (3.58) and (3.59) we immediately find that the number distribution
of a coherent state is a Poissonian:

ity 2 = B ot 6.60)

with mean value and variance both being given by |«|?,
(alAla) = (af(AR)?|a) = |acf?. (3.61)

Hence the number of quanta is a fluctuating quantity for a coherent state |«).

We recall that the coherent states are eigenstates of a non-Hermitian opera-
tor. In comparison with the eigenstates of Hermitian operators, they therefore
exhibit some unusual features. They are over-complete and nonorthogonal.
Let us consider two coherent states |«) and |B) (with a # B) and calculate their
overlap (B|a). From Eqs (3.51) and (3.57) we obtain the relation

(Blla) = w(plo) = (5= + 5 ) (), 6.2

which represents a differential equation for (f|a):

BZ* (Bla) = (/X - g) (Bla). (3.63)
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Taking into account the boundary condition («|a) =1, the solution is obtained
as

(Bla) = exp[—3ln = BI* + 3 (2 p" —a"B)], (3.64)
and hence the squared modulus reads
[{Bla) | = exp(—|a = BJ%). (3.65)

Equation (3.65) clearly shows that for a # § the states |«) and |B) are indeed
not orthogonal to each other. However, if the values of « and B are sufficiently
separated, so that |a« — | >1, they may be regarded as being approximately
orthogonal.

To show that the coherent states resolve the identity, we recall the complete-
ness relation for the number states, which enables us to write

/d2 W= Y /d2 |1 (o) (| me) (], (3.66)

n,m=0
where the integration is performed over the real and imaginary parts, #’=Re a
and &’/ =Im a, respectively, of x=a’ +ia”,

d?a = da’da”. (3.67)

We now use Eq. (3.59) and rewrite Eq. (3.66) as

/dztx o) (| = ) ) /d2zxamtx*”e_‘“|2. (3.68)

nm 0 m!in!

The integral in Eq. (3.68) can be evaluated to be

/ d2a a1 = 7T 0m, (3.69)
and we arrive at

/dza ) (a| = 7 Y [n)(n| = i, (3.70)

n=0

from which we see that the identity can be resolved as

1 2 ~

;/d oo (x| = 1. (3.71)

That is to say, any state |¢) can be expanded in terms of the coherent states as
follows:

9= = [ dala) (aly). 672)
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From Eq. (3.72) together with Eq. (3.65) we see that there is a nontriv-
ial expansion of a coherent state in terms of coherent states, which indi-
cates the over-completeness of the coherent states. To demonstrate the over-
completeness more explicitly, let us consider a subset of coherent states whose
modulus 7 of the complex amplitude, « = rel?, is chosen to be constant. This
represents the set of coherent states on a circle in phase space. Using Eq. (3.59)
the number representation of these states is given as

|re'?) e /2 Z ’”4”|n (3.73)

Fourier transforming this equation with respect to the phase ¢, we readily
derive a representation of the number states [n) (n=0,1,...) in terms of the
coherent states on a circle,

/nl

27t r”

In) =

This result reveals that the complete number-state basis can be expressed in
terms of the coherent states on any chosen circle in phase space. Equivalently,
complete sets of coherent states can also be chosen on other contours, for ex-
ample on a straight line [Adam, Foldesi, and Janszky (1994)].

o2 / dge in?|rei?). (3.74)

3.2.1
Statistics of the coherent states

To illustrate the main difference between coherent states and number states,
let us focus on a radiation-field mode. We have already seen that in the case
of the mode being in a coherent state |a) the probability of finding 1 photons
obeys a Poissonian distribution [Eq. (3.60)]. Hence both the mean number
of photons and its variance are given by the squared modulus of the com-
plex amplitude, |«|2. Next let us again consider a quantity of the type of the
electric-field strength. From Eq. (3.25) together with Eqs (3.51) and (3.52) we
derive for the mean value of the kth component of the electric-field strength

(| Ex(1)|a) = icw[Ag(r)a — A} (r)a*]. (3.75)

That is, when the mode is prepared in a coherent state, then the mean electric-
field strength looks like the electric-field strength of a coherent, classical mode
with (complex) amplitude . Notwithstanding this resemblance, there is a
fundamental difference between a classical and a quantum mode in a coherent
state, because of the vacuum noise inherent in the quantum system. Calculat-
ing the variance of the kth component of the electric-field strength, we easily
derive

(a|[AER(1)]P|a) = w?| Ag(x)]*. (3.76)
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Comparing this with Eq. (3.30), we see that the noise of the electric field is
indeed determined by the vacuum level, independent of the field amplitude.
Rewriting Eq. (3.75) as

(] Ex(r) @) = 20| Ak(r) |a| sin g, (3.77)

where ¢p, is the phase of the (kth component of the) mean value of the electric-
field strength, and using Eq. (3.76), we can easily calculate the relative noise
of the electric field, obtaining

@DE@PT 1
{ [(a| Ex (r) |a)]? } ~ 20a|[sin g, | | (3.78)

Equation (3.78) reveals that (for sin ¢, # 0) the relative noise decreases with
increasing absolute value of « or, according to Eq. (3.61), with the square root
of the mean photon number. The coherent states |a) may therefore be re-
garded as being those quantum states that correspond most closely to clas-
sical, coherent waves. Without going into the detail of quantum coherence
theory [see, e. g., Pefina (1985); Mandel and Wolf (1995)], we note that with a
radiation field being prepared in a coherent state, normally ordered correla-
tion functions factorize perfectly, that is, the coherence condition is satisfied
up to any order:

(@l (B () Ly = (@l B L)) ™ ((al ES )™ (3.79)

3.2.2
Multi-mode coherent states

The extension of the concept of coherent states to multi-mode systems is
straightforward. Similar to the case of number states, the multi-mode coherent
states |{w, }) are simply obtained by taking the (direct) product of single-mode
coherent states, that is,

[{ar}) =T Tlar), (3.80)

A

and the identity operator in the multi-mode Hilbert space then reads

1 (% [ & |aA><M|> ~1 (3.81)
17

In view of a multi-mode radiation field, the mean value of the total number
of photons in all modes, N=Y, 1, and the corresponding photon-number
variance are given by

({ar}IN{an}) = ;|M|2r (3.82)
{ar AN {an}) = ({arN[{an}), (3.83)
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and the mean value and the variance of the kth component of the electric-field
strength are, respectively,

({an}Ex(n){ar}) = ;iw)\ [App(r)ay — A} p(r)ay], (3.84)

{ar}[AE ()P {ar}) = ;wﬁlAA,k(r)|2~ (3.85)

To illustrate how a classical light pulse emerges from a radiation field in a
coherent state |{«, }), let us consider a multi-mode radiation field propagating
in the positive x direction in free space. To take into account the temporal
evolution of the (free) radiation field, we recall that in the Heisenberg picture
the photon annihilation evolves as

ay(t) = aye M, (3.86)

where 4) =4,(0) is the annihilation operator at some initial time t=0. As-
suming that the (nonevolving) initial state vector is a multi-mode coherent
state as given in Eq. (3.80), and using the traveling-wave mode functions of
frequency wj, polarization e; , and quantization volume AL,

1

_ h 2 iwx/c
Av(0) = Aul) = (5 ) e, 687
we derive from Eqs (3.86) and (3.87) the kth component of the electric-field
operator as

Ex(x,t) = Z 5 AE (€10 )kl e 1 E=3/¢) L H e, (3.88)

[cf. Eqs (2.87) and (2.88)]. We now perform the limit of infinite propagation
length, £ — oo, while the diameter or beam waist A is held constant. With in-
creasing £ the modes become more and more dense in the frequency domain,
because w; =27l /L. Defining the operators

fo(w) = lim ;IL (3.89)

with Aw =2mc/ L [cf. Eqs (2.89) and (2.90)], we see that in the limit £ — oo
the I sum in Eq. (3.88) can be written as an integral and the positive-frequency
part of the electric-field operator becomes

A(+) . 0 hiw —iw(t—x/c)5
(x,t) = l;/o dw”47‘[€0C.A [es(w)]ke ag(w). (3.90)
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Correspondingly, the mean electric field in a coherent state reads

a : ® h —iw(t—x/c
<Ek(x/t)>coh:12/0 dw\/ﬁ[ea(w)]k%(w)e (t=x/0) § cc.

(3.91)

Equation (3.91) is capable of describing (the kth component of the electric-field
strength of) a coherent light pulse. To give an example, let us consider the case
where the polarization unit vectors e, (w) are independent of frequency and
suppose that the mode amplitudes are polarization independent,

wo(w) = a(w) = |a(w)]e’?, (3.92)

with the photon spectrum being of Gaussian form with center frequency w
and spectral width Aw <@,

_ <N>c0h 1 (w—w\?
PSR

where (N) o, is the total number of photons of the light pulse:

() ?

(Mo = | defa) (3:94)

Combining Eqgs (3.91)—(3.93) and taking into account that the spectral width
of the electric-field strength is small compared with the center frequency
(Aw <K w), we obtain for the mean electric field

(B 1) = 2,20 oL [ (1-2) " fsn o (- ) =]
(3.95)

which represents an unpolarized, coherent Gaussian light pulse traveling in
positive x direction.

323
Displaced number states

At this point it should be noted that the coherent states are a special class of
states with respect to the transformation given in Eqs (3.39) and (3.44), since
they are defined by the action of the displacement operator on the ground state
|0). A broader class of states is obtained by considering the transformed states
that emerge from the application of the displacement operator on arbitrary
number states |n). Such states are denoted as displaced number states and
they are defined via Eqgs (3.39) and (3.44) as

|n,a) = D(a)|n). (3.96)
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From the general transformed eigenvalue equation (3.40) we can see that the
displaced number states are eigenstates of the displaced number operator, i. e.,
i(a)|n, &) =n|n, a), with

n(a) = D(a)aDt(a) = (4" — a*) (2 — a), (3.97)
where we have made use of Eq. (3.48).

Clearly, for a fixed displacement « these states are orthonormal, just as the
number states are:

(n, am, ) = (D" (&) D(a)[11) = S, (3.98)

and for arbitrary « the identity operator can be resolved as
Y na)(n,a| = 1. (3.99)
n=0

Moreover, for arbitrary n the identity can also be resolved by an integral over
the displacement amplitude, in analogy with Eq. (3.71),

%/dztx |n,a)(n,a| = 1. (3.100)

Finally, their scalar product with number states can be shown to be expressible

in terms of the Laguerre polynomials L (x) as

!
(nfm, @) = (=" [ L (@) T2 =), @0D)

and (n|m, «) = ({m|n, —a))* for the coefficients with m <n.

3.3
Squeezed states

Another important class of quantum states are the squeezed states or more
precisely the quadrature-squeezed states. For the purpose of deriving these
states we return to the unitary transformation, Eqs (3.38) and (3.39), which
was employed to derive the coherent states, and assume that the unitary op-
erator U is now the squeeze operator,

U =85(¢) = exp[(&a? — ga™)], (3.102)

with ¢ — the squeezing parameter — being a complex number. To obtain the
relation between the transformed annihilation and creation operators &', 4’f
and the original ones, it is convenient to define the operators

G(z) = 5°(3), (3.103)
a(z) = G(2)aGt(z), (3.104)
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where z is a real number (the parameter ¢ has been omitted for notational
convenience). Comparing Eqs (3.38) and (3.104) we see that the original and
the transformed annihilation operators are recovered from d(z) for z=0 and
z=1, respectively,

0 =4, (3.105)
=4 (3.106)

Using Egs (3.102) and (3.103) the derivative of the operator (3.104) with respect
to z can be obtained as
da(z) dG(z) déGt(z)

_ ot A NA
- 4 aG"(z2) + G(z)a i

= [a(2), 3{¢a"™(z) — &% (2)}] = 3¢[a(2),4"™(2)]. (3.107)

Since Eq. (3.104) describes a unitary transformation, the operators 4(z) and
4'(z) again obey the bosonic commutator relation (3.4) and we obtain from
Eq. (3.107)

da(z)
dz

dat(z)

=gi'(z), =g

= *0(2). (3.108)
The solution to the differential equations (3.108) reads
a(z) = 6167 + gye 1817, (3.109)

where the operators ¢; and ¢, are determined, according to Eqs (3.105) and
(3.108), by the initial conditions

A(z)|, g =1 +6 =4, (3.110)
da(z) Al(A AN _ aat
& e = G[(é1 — &) = ¢a'. (3.111)

Combining Eqgs (3.109)-(3.111), after some algebra we finally arrive at (¢z =
arg(¢))

a(z) = dcosh(|¢|z) + a*e'?% sinh(|¢]z), (3.112)

from which we obtain, according to Eq. (3.106), the transformed operators &’
and 4"t in terms of the original ones:'

a' = ya+vat, (3.113)
A"t = pat +vra, (3.114)

1) Note that this is a SU(1,1) group transformation.
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where the parameters p and v are defined by

i = cosh |¢], (3.115)
v = ¢!% sinh |¢|. (3.116)
As mentioned before, since the operators 4’ and 4'" are obtained from the op-

erators @ and @' by a unitary transformation, the (equal-time) commutator
relation is preserved,

[@,a% =1. (3.117)

Inserting Eqs (3.113) and (3.114) into Eq. (3.117), it follows that the parameters
i and v obey the following constraint:

pr—F =1, (3.118)

which apparently is provided by their definitions (3.115) and (3.116).

As a unitary transformation U that can be used to define the squeezed co-
herent states, in a similar way to the coherent states (cf. Section 3.2), let us
consider now the unitary transformation

a(g, ) = S(€)D(B). (3.119)

It first coherently displaces by an amplitude p and then squeezes with
squeezing parameter ;. Analogously to the definition of the coherent states
[Eq. (3.50)], we may now define the states |, 8) by applying the transforma-
tion (3.119) onto the ground state |0),

¢, B) = U(&,)I0) = S(&)D(B)[0) = S(5)IB)- (3.120)

The states |, B) (sometimes denoted by |y, v; B)) are called squeezed coherent
states [Stoler (1970, 1971); Yuen (1976); for reviews see Walls (1983); Loudon
and Knight (1987)].

From the relations (3.120) we see that applying the displacement operator
D(B) to the vacuum state |0) and then applying the squeeze operator S(¢&) to
the resulting coherent state |B) yields the squeezed coherent state |, ). How-
ever, we may arrive at the same result if we first apply the squeeze operator
S(¢) to the vacuum state |0) in order to generate the squeezed ground (or
vacuum) state,

&,0) = 5(Z)|0) (3.121)

and then apply the transformed displacement operator D’ () to this state:

¢.8) = D'(B)I¢,0) = D'(B)S(2)[0), (3.122)
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where the transformed displacement operator, which has been used here,
reads

D'(B) = $(2)D(B)S"(2) = exp(pa’™ — p*'). (3.123)

By means of Eqs (3.113) and (3.114) it can be written in terms of the operators
dand at as

D'(B) = D(B') = exp(p'a’ — p"*a), (3.124)
where the transformed amplitude p’ is given by
B =up—vp". (3.125)

Hence the squeezed coherent states can also be obtained by first squeezing the
ground state and then displacing it by a modified amplitude f':

¢.8) = D(B")S(¢)|0) = D(B")I¢, 0). (3.126)

Taking into consideration that 0 = U(g, B)al0) = U(¢ B)al’ (g, B)|¢, B) =
D'(B)a'D"(B)|E, B) = (2’ — B)|E, B) [cf. Eqs (3.47)-(3.49)], we see that the
squeezed coherent states are the right-hand eigenstates of the transformed
annihilation operator,

a'\g, B) = BIE, B), (3.127)

which, in combination with Eq. (3.113), can be regarded as an alternative def-
inition of these states [Yuen (1976)].2

Analogously to the coherent states, the squeezed coherent states are over-
complete and nonorthogonal. To prove that they resolve the identity with
respect to the coherent amplitude, we use Eq. (3.120) and recall Eq. (3.71):

3 (5 [ 18)161)5 @)
= S(&)IsT (&) = 1. (3.128)

1
~[eslEpep

It is also easily seen that the nonorthogonality with respect to different coher-
ent amplitudes but equal squeezing parameters is the same as for the coherent
states:

(¢ alg, B) = (2|ST(£)5(2)1B) = (alp). (3.129)

2) In Yuen'’s approach to squeezed coherent states (also called two-
photon coherent states) the parameter y is chosen to be complex, u
and v obeying the condition ||? — |v|>=1. Since here only the phase
difference arg(v) —arg() is relevant, without loss of generality,
arg (1) may be chosen to be zero.
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Without going into the details of calculation, we note that the squeeze op-
erator $(¢), Eq. (3.102), can be rewritten, on applying exponential-operator
disentangling, as®

i+ ”
el 5 () olge)  ow

with p and v from Eqs (3.115) and (3.116). Hence, the squeezed ground state
|¢,0), Eq. (3.121), can be given in the form of

1 v
|&,0) = —exp<——fz*2> |0), (3.131)
VI 2y
and coherent displacement [according to Eqs (3.122) and (3.124)] then yields
the squeezed coherent states in the form of
1 v
68) = = exp| 5 (0t = 2] 1)
VH 2y
1 [ Lo, stV
=—exp|—z|B|"+pa ——
Vi P2 PIepPi = o
where f’ is related to § according to Eq. (3.125). With the help of Eq. (3.132) it
is not difficult to prove that the scalar products of the squeezed coherent states
|&, B) with the coherent states |a) and the number states |1), respectively, read*

1 a2+ |87 2a*B —va*? +v*p?
(¢, ) = 7 exp( L A LR

(nle, ) = 2 exp) 3 (162 - 27 | 1, <¢%> 63

(at — ﬁ’*)z} |0), (3.132)

(3.133)

with H, (x) being the Hermite polynomial.

3.3.1
Statistics of the squeezed states

To obtain the mean number of quanta, or in the case of a radiation-field mode,
the mean photon number,

(¢, BInle, B) = (¢, pla*alc, p) = (BIST()a"aS(2)(p)
= (BIST(£)a"5(2)8(2)as(¢)|B), (3.135)

3) Equation (3.130) can be proved correct, applying the differential-
equation technique described previously in this section and showing
that it leads exactly to Eqs (3.113) and (3.114).

4) Note that the relation } % H, (x)t" :exp(—t2 + 2tx) has been
used to derive Eq. (3.134).
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we first note that 5t(&) = $(—¢) and that u(—¢) = u(¢) and v(—&) = — v(&)
[cf. Egs (3.115) and (3.116)]. From these relations it follows that, on recalling
Eq. (3.113),

S1(8)as(g) = S(—¢)ast(—¢g) = pa —va', (3.136)
and we obtain for Eq. (3.135)

(¢, BIAE, B) = (Bl (na® —v*a)(pa —va®)|B)
= (Bl(pa%a + |v[*aa* — pva'™ — pv*a?)|B)
=B+ v, (3.137)

where g’ =pup—vp* [Eq. (3.125)]. Analogously, we find for the mean coherent
amplitude

(¢, plalg, By = (BIST(¢)aS(5)IB) = (Bl(na—va®)|p) =B, (3.138)

which means that, in the case of a single-mode radiation field, for example,
the mean value of the electric-field strength takes the same form as when the
mode is in the coherent state | 8') [cf. Eq.(3.75)], that is,

(€, BIEk(1)[¢, B) = iw[Ar(1)p" — AL (r)B™]. (3.139)

For B=0 (and hence g’ =0) we see from the last line in Eq. (3.137) that |v|?
is the contribution to the mean number of quanta coming from the squeezed
ground state |, 0),

(¢,0[a]¢,0) = [v|*. (3.140)

The first term in the last line in Eq. (3.137) obviously constitutes the mean
number of quanta coming from the coherent amplitude 8’ implemented when
the squeezed ground state |¢,0) [Eq. (3.121)] in phase space is displaced by
B’ to generate the squeezed coherent state |¢, 8) [Eq. (3.122)], which is quite
similar to the generation of the coherent state |f’) from the ordinary ground
state |0). Hence |p’|? just corresponds to the mean number of quanta associ-
ated with the coherent part of the excitation of the system,

(B'|alB') = |B'1> = (¢, Blalg, B)I*. (3.141)

Using Egs (3.140) and (3.141), we may rewrite Eq. (3.137) as a sum of the mean
number of quanta associated with the coherent part and the incoherent part
of the excitation, respectively,

(. BIAIZ, B) = (B'[AlB") + (Z,0[A]Z, 0). (3.142)
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For the case of a radiation-field mode, the squeezed ground state |, 0) (¢ #0)
is often called the squeezed vacuum, in contrast to the ordinary vacuum |0),
which is the state with zero photons. It should be pointed out that this does
not hold for the squeezed vacuum |¢,0): the mean number of photons in this
state does not vanish (|v|?>#0).

To gain deeper insight into the statistics of squeezed coherent states, it may
be useful to introduce the phase-rotated quadrature

() =ae'?+ate ', (3.143)
which parametrically depends on ¢. It can be readily proved that

[2(¢), 2(¢")] = 2isin(p — ¢). (3.144)

Hence, two quadratures of orthogonal phases, i.e., ¢’ = ¢ & 71/2, in a similar
way to position and momentum, are canonically conjugate to each other, in
the sense that

[2(¢), 2(p £ 17)] = F2i. (3.145)

The phase-rotated quadrature can be used to represent various physical ob-
servables by supplementing a real-valued scaling factor and appropriate
choice of the phase ¢. For example, identifying £(¢) with a Cartesian com-
ponent of the electric-field strength of a single-mode (free) radiation field, we
would have

Ep(r) = iw[Ap(r)a — A (1)a'] = w|A(x)|2(9), (3.146)
where the phase is given by
¢ = arg[A(r)] + 3. (3.147)

From Eq. (3.138) we immediately obtain the expectation value of the quadra-
ture as

(&, Bl2(9)|2, B) = P'e'? + B e ™9, (3.148)

which of course corresponds to Eq. (3.139).
Let us now consider the quadrature fluctuation by calculating the variance

(&, BlAL(9)2IE, B) = (&, BI£* (@), B) — [{Z, Bl£(9)|Z, B)]™.
= [(& Bl(a*a+aa®)|z, p) — 2(Z, BlalE, B)[?]
+ 2Re[(Z, Bl(A2)*|E, B) €¥7]. (3.149)



3.3 Squeezed states |95

Applying Eqs (3.136) and (3.138), we first calculate
(@ Bl(AD)%IC, B) = (BIS'(2)a*5(2)|B) — B = (

(Bl +v2a*2 — v (a*a + aa*)]|B) — B

= —uv, (3.150)

so that, by insertion of Eq. (3.150) into (3.149), we obtain for the sought vari-
ance

(&, BIIDR()PIE, B) = |pel® —vre i), (3.151)

Introducing the modulus |v| and phase ¢, (= ¢¢) of v, we may rewrite
Eq. (3.151) as

(& BIIAR(P)2E B) = |1 — [v] expli(29 + g0)]|°

1+ v
= {1+2|v|2{1— |1/||Z| COS(2§0+(Pv):| },

(3.152)

where, in order to express the variance solely in terms of v, we have used the
relation (3.118).

Equation (3.152) reveals that for a fixed value of v (i.e., fixed ¢) the vari-
ance (¢, B|[A%(¢)]?|¢, B) sensitively depends on the phase 2¢ + ¢,. Clearly,
in the limiting case as v goes to zero (or equivalently ¢ — 0), that is, when
the squeezed coherent state |, B) tends to the ordinary coherent state | ), this
phase dependence vanishes and we obtain the ground-state quadrature fluc-
tuation:

lim (&, Bl[a%(9) P12, B) = (lIat(9)P1B) = (0l[A(@)I0) = 1. (3.153)

For nonvanishing squeezing parameter (v # 0), however, the fluctuation de-
pends, for chosen ¢y, crucially on ¢, so that at certain values of ¢ the fluctu-
ation may be larger or even smaller than the ground-state limit (3.153). From
Eq. (3.152) it can be seen that the fluctuation is smaller than the ground-state

limit, i.e., (&, B|[A%(9)]?|E, B) <1, for

| v]?
—_— 154
cos(2¢ + ¢y) > T (3.154)

and it is minimal for cos(2¢ + ¢, ) =1. That is, for the specific values of the
phase ¢ given by

@min = k7t — 1y (3.155)
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10

0 /2 i
¢
Fig. 3.1 The variance of the quadrature ([A%(¢)]?) is shown for a
squeezed state with ¢, =— 71/2 and for |v|>=0.3 (curve 1), 1 (2), 3 (3)
and 10 (4); the ground-state noise level (|v|> =0) is indicated by the dot-

ted line. It can be seen that the noise is rt-periodic with respect to the
phase ¢ of the quadrature.

(k, integer), the quadrature fluctuation is reduced below the ground-state limit
by the factor

(€ BlIAt(9)%1E,B) | = ¢72kl, (3.156)

9= Pmin

On the other hand, the fluctuation becomes larger than the ground-state
limit, i.e., (¢, B|[A%(9)]?|E, B) >1, for

|_v?
cos(2¢ + @v) < Tl (3.157)

Here the maximum fluctuation is observed at phases where cos(2¢p + ¢, ) =—1,
that is for values of ¢ given by

Pmax = 5 (2k+ 1)t — Sy, (3.158)

where the fluctuation is enhanced with respect to the ground state by the fac-
tor

(¢ BlIA%(9)2[E, B) | =2kl (3.159)

@=@Pmax

We see that for certain phase values the quadrature noise can be “squeezed”
below the ground-state (vacuum) level at the expense of increased noise for
certain other phase values. From inspection of Eq. (3.152), this squeezing ef-
fect is seen to increase with |v| (=cosh |¢]). The typical fluctuation behavior
of a system in a squeezed coherent state is illustrated in Fig. 3.1. It clearly
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shows that, with decreasing noise for a given phase @mnin, the noise for the
phase @max = @min +77/2 can drastically increase. Moreover, the more strongly
the noise is reduced below the ground-state (vacuum) level, the narrower the
phase region around ¢min, in which noise reduction is observed, becomes.

The behavior is closely related to Heisenberg’s uncertainty principle for two
observables A and B,

((AA)2)((AB)?) > 1I([A, B]) %, (3.160)

which, because of the commutator relation (3.144) for A=%(¢) and B=%(¢’),
reads

([A%(@)P) ([A%(")]?) = sin®(¢ — ¢) (3.161)

and holds for arbitrary quantum states. In the case when the two phases are ¢
= @min [Eq- (3.155)] and ¢’ = @max [Eq. (3.158)] — two phases that correspond to
two orthogonal directions in phase space, so that the quadratures £ (@min ) and
%(¢max) are canonically conjugate to each other — then, in agreement with the
commutator relation (3.145), the uncertainty relation (3.161) takes the form

<[Aﬁ(¢min)]2><[A£(€Dmax)]2> > 1. (3.162)
For squeezed coherent states, from Eqs (3.156) and (3.159) it follows that
(€, Bl[AZ (@min) 1P|, B)(E, B [A%(9max)*[E, B) = 1, (3.163)

which shows that squeezed coherent states (as also coherent states) are
minimum-uncertainty states. It should be pointed out that, in the more
general case, where the squeezing phase ¢, is not necessarily adjusted to the
quadrature phases ¢ and ¢+7/2, according to Eqs (3.155) and (3.158), from
Eqg. (3.151) the uncertainty product

(&, BlIAR ()12, B) (& BI[A% (¢ + 1) )%(2, B) = [1+ 442 v sin (29 + )]
(3.164)

follows. Comparing this equation with Eq. (3.163), we find that the squeezed
coherent states minimize the uncertainty product for £(¢) and £(¢ + 77/2)
only when the phase of squeezing is related to ¢ by

20+ @y =km, (3.165)

where k is an integer number [Schubert and Vogel (1978a)]. In this case

(&, B|[A%(9)]2|E, B) and (&, B|[A%(¢ + 71/2)]?|E, B) are just the extremal val-
ues [Eqs (3.156) and (3.159)]. The coherent states |«), however, are minimum-
uncertainty states, independent of the choice of the phase ¢:

(| [A2(g)2|a) (| [A% (g + §70)]|a) = 1. (3.166)
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10

Ax(@)A(@+ 7/2)

Fig. 3.2 The uncertainty product Ax(¢)Ax(¢+ 71/2)

H[Az(9)P){[A%(p+ 71/2)]2)}% as a function of ¢ for a squeezed state
with ¢, = —7/2 and for |v|?> = 0.3 (curve 1), 1 (2), 3 (3) and 10 (4). The
case with |1/\2 = 0 (dotted line) corresponds to a coherent state that
minimizes the uncertainty product for all values of ¢.

The dependence on the phase ¢ of the uncertainty product of two canonically
conjugated quadratures in the case of squeezed coherent states is illustrated
in Fig. 3.2.

Recalling the definition of normally ordered operator products, we can eas-
ily prove the relation

(:[82(9)]:) = ([A2(9)]?) — (0l[A2(9)]?(0), (3.167)

which is valid for an arbitrary quantum state in which the system is prepared.
Since in the case when the system is prepared in a squeezed coherent state
|&, B) the quadrature variance (¢, B|[A%£(¢)]?|¢, B) becomes, for appropriately
chosen values of ¢, smaller than the vacuum limit (0|[A%£(¢)]?|0), so that the
normally ordered variance (&, B| : [A%(¢)]? : |& B) becomes negative. At
this point it should be emphasized that the squeezed coherent states may be
viewed as a typical but special class of states giving rise to squeezing. Quite
general, a quantum state may be said to reveal squeezing if for certain values
of the phase the normally ordered quadrature variance becomes negative:

(:[A%(9)]?:) < 0. (3.168)

3.3.2
Multi-mode squeezed states

The criterion for squeezing as given by Eq. (3.168) can also be used to study
(complicated) multi-mode systems. Let

X =Y catalen) (3.169)
)
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be the multi-mode quadrature operator. According to Eq. (3.168), squeezing
is observed if

(:(AX)?%:) <. (3.170)
In particular, a multi-mode radiation-field strength

F=Y Fia+F;al (3.171)
A

[cf. Eq. (2.271)] can be regarded as a multi-mode quadrature, setting c, = |F, |
and ¢, =argF), and the squeezing criterion reads (: (AF)?:) <0, i.e, the nor-
mally ordered field variance must be negative.

A generalization of the single-mode squeeze operator defined by Eq. (3.102)
to a squeeze operator acting on multi-mode systems is

S=exp| Y (&Evaray — Eavatal)|. (3.172)
AN

If the matrix ¢, has only diagonal elements, {),/ = J) \/$1/2, the multi-
mode squeeze operator (3.172) reduces to a product of single-mode squeeze
operators of the type (3.102), and its application to the ground state of the
multi-mode system generates multi-mode squeezed vacuum states that are
simply the (direct) products of single-mode squeezed states. Additional ap-
plication of the multi-mode displacement operator then generates multi-mode
squeezed coherent states, which are of course also direct-product states.

A system is said to genuinely feature multi-mode squeezing, if there are
nonvanishing off-diagonal ¢,/ that give rise to nonclassical correlations be-
tween the modes. To give a simple but illustrative example, let us consider
the case of two modes (A =1,2) being prepared in a two-mode squeezed vac-
uum state as a typical example of an entangled state (Section 8.5):

¢,0,0) = 5(£)[0,0), (3.173)

where |0,0)=101)|0,) is the ordinary two-mode vacuum state and the two-
mode squeeze operator $(¢) is a special case of the general operator (3.172)
with §12=C, §21=¢" and {11 =022 =0,

$(2) = exp(&*arhy — Zajay). (3.174)

The explicit action of the two-mode squeeze operator on 4; and 4, can be
found in a similar way to that described for the single-mode case. The result
is

ST(&)a1S(8) = pay — val, (3.175)
$%(8)a28(g) = iy — vaj, (3.176)
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where y and v are related to ¢ by Eqgs (3.115) and (3.116), respectively, and in
close analogy to Eq. (3.130), the two-mode squeeze operator can be disentan-
gled to obtain

. v 1 i+ +1 v*
S =exp <—— a{a;) <;) exp (; ﬁ1ﬁ2> : (3.177)

Combining Eqs (3.173) and (3.177), we can easily see that the two-mode
squeezed vacuum state can be represented as

1 VA'I-A'I'> 100( V>n
,0,0) = —exp| —— a4, ) [0,0) = — —— n,n). (3.178)
|¢>yp(y12|>hz=0y|>

The generalization to two-mode squeezed coherent states with nonvanishing
coherent amplitudes can be obtained in a straightforward way by additionally
applying coherent displacement operators for both modes.

Let us consider a two-mode radiation-field strength

F = Fay + Fal + Ba, + Fal (3.179)

[Fy =|Fx|exp(ipy)]. Taking the two-mode field to be in the squeezed vac-
uum state |, 0,0) as given in Eq. (3.173) and using Eqs (3.175) and (3.176), we
calculate the normally ordered variance of F to be

(£,0,0]:(AF)?:(£,0,0) = 2(|F [* + | B[*) [v]?

2|F1F2| 1+ |1/|2
1-— os(@1 + @2 + . 3.180
|F1|2 ¥ |p2|2 |v|2 cos(¢1 P2 4’1/) ( )

We see that the radiation may indeed be squeezed, because for appropriately
chosen phases the value of (: (AF)?:) may become negative.

We identify 4; and 4, with the annihilation operators for modes of fre-
quencies w1 = wp + Aw/2 and wy =wy—Aw /2, respectively, and apply the
model to the calculation of the normally ordered variance of the electric field
E(x, t)=EH)(x,t)+ EC)(x, 1),

(x,) —z/ ,/47T€0CA (=219, (3.181)

of a linearly polarized wave packet propagating in the positive x direction [see
Eq. (3.90)]. The quantum state considered here is a squeezed vacuum of the
form

[¥)sv = S|P)v, (3.182)
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where |¢)y denotes the ordinary vacuum state and the squeeze operator is
given as

$= exp{/ooo dw [ (w)d(wy + w)d(wy — w)
— E(w)at (wy +w)a' (wy —w)]}. (3.183)

Such a squeeze operator correlates pairs of modes around the mid-frequency
wy, quite similar to the previous example given in Eq. (3.174), however, inte-
grated over all difference frequencies. Nevertheless, it can be easily seen that
the following transformation holds in close analogy to Eqs (3.175) and (3.176)

STa(w)$ = p(lw — wol)a(w) = v(Jw — wol)a* (2w — w), (3.184)

where y(w) and v(w) are defined via {(w) as described in Eqs (3.115) and
(3.116), respectively.
From this transformation can immediately be seen that

(ED)(x,1))sv = 0. (3.185)

Further, by assuming a finite spectral width of squeezing in the sense that
v(w) # 0 only for 0<w <Aw, where the spectral width is small compared
with the mid-frequency, Aw < wy, it can be shown that the field correlation
functions read (to good approximation) as

(EO) (x, HEH (&, 1)) sy

= ﬂ iwo(T—1') A 2 o

= ZneoCAe /0 dw |v(w)|* cos|w(Tt — )], (3.186)
(ED) (x, )ED (o, ¥))ey

__hwo —iwo(T+7) Bw L

T DregcA’ /0 dw p(w)v(w) cos[w(t — T')], (3.187)

where the notation T=t—x/c has been used. Suppose that the times to be re-
solved are large compared with the inverse bandwidth of the squeezing spec-
trum, AT>> (Aw) !, and that the squeezing spectrum is sufficiently flat, i.e.,
v(w) ~ vand p(w) ~ ji. In this case the frequency integrals in Eqs (3.186) and
(3.187) can be approximated as delta functions and we obtain:

N N hw,
(=) () (5! ¢ — 0
(EV7 (e, HEY (X 1) ) sv reoc A

<E(+)(X, t)E"H)(x’, sy = hewo v exp[—iwo (T + )]6(t —1'). (3.189)
ZEOCA

|7|? explicwo (T — T')]6(T — '), (3.188)
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A radiation field with mean value and correlation functions according to
Egs (3.185), (3.188) and (3.189) is usually called squeezed white noise [Gar-
diner (1991)]. Note that for an ordinary white-noise field, the relations
(EHE) = (ECIEC)) =0 hold.

3.4
Quadrature eigenstates

So far we have studied the eigenstates of various kinds of operators, such as
Hermitian number operators 71 = ata (number states), non-Hermitian photon
destruction operators @ (coherent states), and linear combinations of photon
destruction and creation operators pui+vat (squeezed coherent states). In this
context, the question arises as to what are the eigenstates of the Hermitian
phase-rotated quadrature operator £(¢) defined by Eq. (3.143).

Before going into detail and answering the question we first mention the
limiting properties of the squeezed coherent states. For this purpose let us
consider the commutator of the annihilation operator 4’ = ud + va* and the
quadrature operator,

[2(),d'] = [ae'? 4 ate™ ™%, ua + val

1+ |v|?
lv|?

= |vle”i® {ei@“%) - (3.190)

Choosing the phases as 2¢ + ¢, =27tk where k is an integer number, the com-
mutator vanishes in the limit of infinite squeezing;:
ll‘im [£(@), 2] =0 (29 + ¢y = 271k). (3.191)
V|—00
That is, in the considered limit the operators £(¢) and 4’ obviously have the
same eigenstates. In the limit as |v| — oo the eigenstates of 4’ represent ideally
squeezed coherent states, so that (for appropriately chosen phase ¢) the eigen-
states of the quadrature operator can be viewed as ideally squeezed coherent
states in that limit.

We now turn to the problem of deriving the explicit form of the (single-
mode) quadrature eigenstates in terms of number states.’> For this purpose
let us first consider the case ¢ =0, for which the form of £(¢) corresponds
to the well known position operator. The corresponding eigenvalue equation
expanded in terms of number states reads

Vn+1(n+1lx) +v/n(n—1|x) = x(n|x). (3.192)

5) Alternative derivations of the phase-rotated quadrature eigenstates
in both number-state and coherent-state representations were given
by Schubert and Vogel (1978b).
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The normalized solution of Eq. (3.192) can be written in terms of the Hermite
polynomials as

— 1
(n]x) = a(x) = (2"n!V/271) H, (x/V2)e 37, (3.193)
For an arbitrary phase ¢ we employ the phase-rotation operator given by
U(g) = exp(—igata), (3.194)

with the help of which it may be easily proved that

£(0) = U'(g)2(9)U(9)- (3.195)
The general eigenvalue problem can then be written as

£(0)|x) = U'(9)2(@)U(g)Ix) = xIx), (3.196)
or, multiplying from the left-hand side by U(¢),

2(g)U(g)|x) = xU(p)|x). (3.197)
This shows that the eigenstates of £(¢) are simply given by

x, @) = U(g)]x), (3.198)
which in the number basis reads as, on recalling Eq. (3.193),

(n|x, @) = Pu(x)e™™?. (3.199)

Clearly, the quadrature eigenstates |x, ¢) can also be expressed in terms
other than number states. In particular, in the case of a coherent-state rep-
resentation we have

|x, ) = %/dzzx |a) {a|x, @). (3.200)

The scalar product («|x, ¢) can be obtained in different ways, one of which is
by use of the number states and direct evaluation of the occurring sums (cf.
footnote 4, p. 92). The result is
(alx, ¢} = (270) % exp [~ 4 xlafe 190
x exp{—|a|* cos®(¢ + ¢a) + Yi|a|*sin[2(¢ + @a)]},  (3.201)
where ¢, =arg(«x). Equation (3.201) reveals that the probability distribution

for observing a value of the quadrature x when the system is prepared in a
coherent state |a) is a Gaussian,

{al, ) = —= exp{~lx - (£(¢)) 2}, (3:202)
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where the mean value reads

(2()) = («|2(@)|a) = 2|af cos(¢ + pa)- (3.203)

We finally note that, for given ¢, the quadrature eigenstates are of course
orthogonal and complete in the sense that

(x, 9", ) = 6(x = x'), (3.204)
and

[axlxo)(x ol = 1, (3.205)

which can be proved by using the explicit form of the quadrature eigenstates
in the number-state or coherent-state representation as given above.

3.5
Phase states

As we know, the annihilation and creation operators 4 and 4" correspond to
the classical complex amplitudes & and a*, respectively, according to the rela-

tions
a— = |ale'?, (3.206)
At o = |ale 0. (3.207)

Thus in classical physics it is straightforward to express the quantities of the
system in terms of the amplitude and phase variables |«| and ¢, respectively.
Amplitude and phase seem to appear in this context as observable quantities
and one may therefore ask for the quantum-mechanical operators which, in a
sense, correspond to them. Attempts to introduce amplitude and phase vari-
ables in quantum mechanics are nearly as old as quantum mechanics itself.
Since Dirac’s introduction of amplitude and phase operators in 1927, a series
of concepts have been developed. Here we concentrate on only a few of them
and emphasize more the resulting phase states that are eigenstates of appro-
priately chosen phase operators.

In close analogy with the classical approach to the problem of defining am-
plitude and phase variables, Dirac introduced a phase operator ¢ by factoring
the annihilation and creation operators as follows:

a=vva, at=vavt, (3.208)

where the operator V is regarded as being a unitary operator of the form

N N

V=¢? (3.209)
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[Dirac (1927)], with ¢ being assumed to be the Hermitian phase operator,
¢" =4 (3.210)

However, difficulties arise here which are closely related to the fact that the op-
erator V is actually not unitary [London (1926, 1927)] and therefore Egs (3.208)
and (3.209) do not define a Hermitian phase operator ¢. It can be proved [Car-
ruthers and Nieto (1968)] that (0|V*V|0) =0, which contradicts the assump-
tion of unitarity, V1V =1I. This result can be shown as follows. Applying
Eq. (3.208) to a photon-number state |n) yields

Vin)=|n—1), n=12,.... (3.211)

In the case n=0, due to the completeness of the number states, one may write
V00) =Y duln). (3.212)
n=0

From these equations one finds that

Viny =Y |m)(m|V|n) = d;]0) + |n +1), (3.213)

and hence for n>0
Vi) = Vn—1) =d:_,[0) + |n). (3.214)

Therefore, if VTV =1 it follows that d,, =0 for all n. This means that V|0) =0
and therefore (0|VTV|0) =0. Note that in contrast to VIV, VVT is the identity
operator: VVt=I.

3.5.1
The eigenvalue problem of V

Susskind and Glogower (1964) considered, according to Eq. (3.208), the expo-
nential phase operator V but without assuming its unitarity:

V=ed, V= (c9)" (3.215)

[see also Carruthers and Nieto (1968)]. To represent the operators V and V' in
the number basis, we use the number representations of Vi, 4 and 8%, namely

Vi= Y Vil = Y VaETin 1) (n+1, (3.216)
n=0 n=0
i= Y VAT Il L1, (3.217)
n=0
at =Y VATt 1)(n) (3.218)

n=0
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[cf. Egs (3.19) and (3.20)]. Combining Eqgs (3.217) and (3.216) and taking into
account the completeness of the number states, we derive

v L{n)(n +1jm)(m|

T|>
e
ir1e

3
I
o
3
Il

Il
I agk
HMS

\/—| Y(n +1|m)(m| = Z\n (n+1vn, (3.219)

3
Il

from which, together with Eq. (3.208), we may choose V as

<>
Il
e

|n)(n+1], (3.220)

3
Il
o

and the relation
VWi=va+1V (3.221)
holds.® Accordingly, we have

_ é|n+1)<n|. (3.222)

Applying V to a number state |n) gives, on using Eq. (3.220),

Vin) = |n—1). (3.223)
In particular, the application of V to the ground state gives

V|0) = 0. (3.224)
Combining Eqs (3.220) and (3.222), we derive

Vvt =1, (3.225)

ViV =1-10)(0|. (3.226)
Equations (3.225) and (3.226) imply that

[V, V'] = 10)(0]. (3.227)

It should be noted that the nonunitarity and the noncommuting nature are
only relevant for states |¥) having a significant overlap with the ground state
(vacuum):

(YIIV, VY1) = [(0[¥) [~ (3:228)

6) Note that there is an ambiguity because of the undetermined term
with m =0 in the second line of Eq. (3.219). From the first line of
Eq. (3.219) an ambiguous definition of V can be given by supposing
that 4= (1+1)'/2V, which implies that Va'/2= (n+1)1/2V.
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Let us now consider the eigenvalue problem for V. Postulating
Vig) =e?l¢) (3:229)

and expanding |¢) in the number basis,

lp) =) buln), (3.230)
n=0

we readily arrive, on using Eq. (3.220), at the recurrence relation

bys1 = by, (3.231)
which may be satisfied by choosing

by = be'™?. (3.232)

The eigenstates of the operator V have therefore the form

|p) =bo Y_ ™). (3.233)

n=0

As expected, application of U(¢), Eq. (3.194), onto |¢$) shifts ¢ to ¢ — ¢,

U(e)l¢) = ¢ — ). (3.234)

Furthermore, the states |¢) obviously satisfy the periodicity condition
|p+27) = |¢), (3.235)

and the identity can be resolved by these states:

21
bov2] ® [ g l4) (9

Y In) 5 [ o explitn = myg)

n,m=0

i ) (m| 6um = 1, (3.236)

n,m=0

from which we may choose byp=1/ V27
Having in mind a classical picture of phase, the states

1 &

lp) = —=Y_ e"|n), (3.237)
VI

may be regarded as quantum-mechanical phase states [cf. London (1926,

1927)]. The thus introduced phase is also called the canonical phase or Lon-

don phase. In particular, Eq. (3.234) implies that a freely evolving phase state
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(¢ — wt) would remain a phase state for all time. However, the states |¢)
are not orthogonal and, unfortunately, they cannot be normalized in a proper
way. Indeed, we deduce from Eq. (3.237) that”

(9le") 2 Zexp —in(¢p —¢")]
:{ﬁJ’% (e ‘P)——Cof[%@—(?’)]} (3.238)

(0<|p—¢'| <27m). Clearly, the states |¢) are not eigenstates of the operator V*,
which is significant for an analysis of states which substantially overlap with
the ground state. Combining Eqs (3.222) and (3.237) we find that

Vi) =e ™ (|4>> \0>) (3.239)
Wiz

Nevertheless, the states |¢) may be useful because they resolve the identity,

Eq. (3.236). Hence any state |¥) can be expressed in terms of them:

27T
¥ = [ dgle)ele). (3.240)

The nonorthogonality of the states |¢) might be removed by using a finite-
dimensional Hilbert space spanned by r+1 number states {|n) }. In this trun-
cated Hilbert space, a set of r+1 phase states |cp(’)> can be introduced as

(r) ! e |1y 3.241
where
(r) _ () 2mr _
on = ¢+ (m=0,1,...,r). (3.242)

[cf. Eq. (3.237)]. Here the phase 47((;) is a reference phase whose value deter-
mines the choice of the 27t periodicity interval of the phase. For each finite r

the states |4),(£)> are orthonormal and complete in the sense that
(01937 = G, (3:243)

Z 5 (9] = (3.244)

7) Note that the relations 2}, ; sin(n¢) =cot(¢/2) and } -, cos(n¢)
—1/2=nY . 0(¢—2nm) are valid, the latter results from the
identity Y5, exp(ing) =2y o d(¢p—2nm).
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Hence in the truncated Hilbert space a Hermitian phase operator can be de-
fined as follows:

$ = X ol gl (3:245)

The limiting procedure r — oo can then be performed at the end of all
(c-number) calculations [Loudon (1973); Pegg and Barnett (1988, 1989); Bar-
nett and Pegg (1992)].

3.5.2
Cosine and sine phase states

It is worth noting that the operators V and V! may be used to define Hermitian
operator analogues of cos ¢ and sin ¢ as follows:

C=Lwv+vhH, (3.246)
§=1i(v-vr). (3.247)
Using Eqs (3.220) and (3.222), we see that

v,n)=v, [Vi,a=-V" (3.248)
These commutation rules imply, on using Eqs (3.246) and (3.247), the follow-
ing commutation rules for ¢, § and 7:

[C,a] =iS, [S,n]=—iC, [C§]=1ib, (3.249)

where Py = |0)(0|. Hence according to Heisenberg’s uncertainty principle
(3.160), the following uncertainty relations can be deduced:

AnAC > 3(8), AnAS > 3(C), ASAC > 1 (D). (3.250)

In particular, the third of these reveals that C and S can be accurately measured
simultaneously only when the state, say [¥), has sufficiently small overlap
with the ground state: |(0[¥)|><1. In other words, if the overlap cannot
be disregarded, C and S are expected to give rise to two (Hermitian) phase
operators gc and ¢s instead of the desired one-phase operator. Since C and S
are well-defined Hermitian operators, their eigenvalues give possible results
of measurements of C and S.
In order to solve the eigenvalue problem for C,

C| cos ¢p) = C|cos ¢), (3.251)

we expand | cos ¢) in the number basis,

|cos¢) = i by |n). (3.252)
n=0
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Recalling Eqs (3.220) and (3.222), after some algebra we obtain the recurrence
relations

2bpC =b1, 2b,11C=by+byyp. (3.253)
The second of these is solved by

by=aV"+pV", C=1(V+Vv (3.254)

for arbitrary values of « and B. To avoid divergence difficulties |V| must be
unity so that

V=¢9 C=cos¢. (3.255)

To specify « and f, we note that by can be chosen to be real so that & = *
in Eq. (3.254). Making the substitution by — by sin¢ (by real), it is seen from
Egs (3.254) and (3.255) that

by — bosin|(n +1)¢]. (3.256)
Hence Eqs (3.251) and (3.252) become
C| cos ¢) = cos ¢| cos p), (3.257)
| cos ) = by fo sin[(n + 1)g]|n). (3.258)

Note that all independent solutions are contained in the interval 0 <¢ < 7. By
straightforward calculation, on recalling the formulae in footnote 7, p. 108, it
can be shown that the | cos ¢) form an orthonormal and complete set of basis
vectors in the Hilbert space (bg=+/2/m):

(cos¢p|cos¢’) = 5(¢p —¢'), (3.259)
/07r d¢ | cos ¢p)(cos¢| = I. (3.260)

The solution of the eigenvalue problem for the sine operator $ may be found
in a very similar way [for details see Carruthers and Nieto (1968)]. The result
may be written as

S| sin ) = sin ¢ sin p), (3.261)

|sing) = Fz{exp i(n+1)9] — exp[—i(n +1)(9— )]} n), (3:262)

(sing|sing’) = (¢ — ¢'), (3.263)
/ n//zz d¢b | sin¢) (singp| = 1. (3.264)
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By power-series expansion, for each operator € and S, Hermitian phase op-
erators ¢c (=) and s (=), respectively, can be defined as

N 14 E (DF (=3 parr

pc=cos'C=in-Y, G+ (3.265)
20 2k+1\ k

$5:$n1§=:§:(1y<%)§”“. (3.266)
= 2k+1\ k

Note that ¢c and $s do not commute ([P, Ps] #0). Hence two unitary opera-
tors Ve and Vs can be defined:

Ve=eifc (V0 =VeVi=1), (3.267)
Vs =efs  (VIVs=VsVE =1), (3.268)

so that, combining Eqs (3.246) and (3.247) with the inverse of Eqs (3.265) and
(3.266),

V = L(elfc 4 oifs 1 g0 _ omids), (3.269)

This result together with Eq. (3.208) is the correct version of Dirac’s postulate
given in Eq. (3.209).

The cosine and sine operators of the phases of two modes can be used to
define cosine and sine operators of the phase difference, by applying the ad-
dition theorems as follows:

Co=CG+ 515, (3.270)
S12=51C — 5Cy. (3.271)

From the commutation relations (3.249) it is easily shown that Cn and §12
commute with the total-number operator:

[Cia, 1 +112) =0, [S12,11 +1712) =0 (3.272)

(note that operators of different modes commute).
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